

Town of Moraga	Agenda Item
Ordinances, Resolutions, Requests for Action	11. A.

Meeting Date: March 24, 2021

TOWN OF MORAGA

STAFF REPORT

To: Honorable Mayor and Councilmembers

From: Shawn Knapp, Public Works Director / Town Engineer
Mark Summers, Associate Civil Engineer

Subject: Receive Update on Fifteen Percent Design of the Laguna Creek Restoration Project (CIP 16-2011) and Provide Direction to Staff

Request

17 The purpose of this agenda item is for the Council to receive the fifteen percent design of
18 the Laguna Creek Restoration Project and provide direction to staff.

Background

22 The proposed Laguna Creek Restoration Project (Project) is located at the Town-owned
23 Hacienda de las Flores property (Hacienda) at 2100 Donald Drive. The Project consists
24 of removing an underground culvert near the Pavilion building and restoring a natural
25 channel in its place in order to provide improved flood protection for the Pavilion and other
26 adjacent facilities at the Hacienda.

28 The contributing watershed at this location is about two square miles and includes the
29 neighborhoods of Campolindo, Carol Ranch, and Rheem Valley, among others. Laguna
30 Creek generally flows southward, variably within large underground storm drain pipes or
31 in open channel creeks, eventually discharging into the Upper San Leandro Reservoir.

33 Upstream of the culvert at the Hacienda, Laguna Creek flows as an open channel creek
34 where it is joined by a tributary creek from Donald Drive. Downstream of this confluence,
35 Laguna Creek flows into an 8-foot diameter corrugated metal culvert (to be removed) near
36 the Pavilion. After traveling through the 240-foot long culvert, the creek “daylights” into
37 an open channeled creek again for about 100 feet before entering a 10-foot by 12-foot
38 rectangular culvert¹ that flows beneath Devin Drive.

¹ Please note this is a correction to previous documents that erroneously described the rectangular culvert crossing under Devin Drive to be 12 by 14 feet. The correct dimension is 10 by 12 feet.

1 The 8-foot diameter culvert has been subject to flooding over the years as it is not
2 adequately sized to handle large peak flows. For example, during the 2005 to 2006 winter
3 storms, heavy rains caused Laguna Creek to rise and flow over the banks in the vicinity
4 of the Pavilion. This resulted in significant damage to the Pavilion building itself, as well
5 as damage to the wooden footbridge and walkways, a wrought iron gate, more than 200
6 feet of chain link fence, and the retaining walls, headwalls, wing walls, and banks were
7 washed out and damaged.

8
9 On December 5, 2012, the Town entered into a consultant services agreement with
10 WRECO to evaluate alternatives to protect the Hacienda facilities against flood risk from
11 a 100-year flood event. WRECO provided engineering services to assess the existing
12 conditions of Laguna Creek within the Hacienda property and recommendations to protect
13 the Pavilion and adjacent facilities.

14
15 On April 23, 2014, the Council received a Hydraulic Study and Alternatives Analysis and
16 presentation² from WRECO outlining ten alternatives that were studied to relieve flooding
17 at the Pavilion. The alternatives were:

- 19 1. No build
20 2. Line the inside of the existing culvert with a smooth lining
21 3. Construct a parallel 9-foot diameter reinforced concrete pipe culvert
22 4. Construct a 9-foot diameter reinforced concrete pipe culvert and relocate the
23 existing sewer main
24 5. Replace the existing culvert with a larger 14-ft by 12-ft reinforced concrete box
25 (RCB) culvert
26 6. Install an upstream detention basin
27 7. Raise the Pavilion floor elevation above 100-year flood elevation
28 8. Relocate the entire Pavilion structure outside of the 100-year floodplain
29 9. Construct a flood wall around the Pavilion
30 10. Daylight and restore Laguna Creek to contain the 100-year flow within the
31 banks by removing the existing culvert

32
33 Only two of the alternatives (Alternatives 5 and 10.) adequately improved the channel
34 capacity to convey the 100-year flow of Laguna Creek and provided flood protection to
35 the Pavilion during the 100-year storm event. WRECO determined that restoring the
36 natural channel (Alternative 10) would have a lower cost than the box culvert (Alternative
37 5). Additionally, they determined Alternative 10 may be eligible for grant funding as a
38 channel restoration project. Alternative 10 – daylighting and restoring Laguna Creek –
39 was therefore recommended to Council.

40
41 Council adopted Resolution 34-2014 to accept the Hydraulic Study and chose the
42 recommendation to restore the natural channel (Alternative 10) based on the study and
43 the presentation. Council directed staff to prepare the recommended natural channel
44 restoration project documentation to be “shovel ready” and to pursue grant funding for the
45 Project.

² The Hydraulic Study and Alternatives Analysis, and the WRECO presentation are available for inspection upon request.

1 Channel Restoration

2 The Council-preferred Creek Daylighting project generally entails: removing the existing
3 8-foot diameter pipe; removing a portion of the existing inlet headwall; and restoring an
4 open channel that mimics a natural stream. The project would require relocating an
5 existing sewer main and installing a natural-bottom arch culvert bridge in order to maintain
6 connectivity to the existing Moraga Road entrance. The removal of the culvert and
7 creation of the channel is intended to provide sufficient capacity to convey the 100-year
8 storm event, prevent flooding to the Pavilion building, provide a natural amenity to the
9 public, and restore aquatic and riparian habitat.

10 Hydrology

11 As discussed in the 2014 WRECO Hydraulic Study, there are two sources of peak flow
12 data: 1) FEMA; and 2) Contra Costa County Flood Control District (CCCFD). The FEMA
13 peak flow data (last revised in March 2017) are included in the Contra Costa County Flood
14 Insurance Study and were calculated based on approximate methods using data from
15 nearby watersheds. The CCCFD peak flow data were calculated in 1992 and assumed
16 "full buildout of the Town." This means they assumed 100 percent development per the
17 General Plan that was in effect in 1992 and are therefore much higher than the FEMA
18 peak flow rates as shown below:

Recurrence Interval	FEMA	CCCFD
10-year Peak Flow	660 CFS	1,100 CFS
50-year Peak Flow	1,100 CFS	1,560 CFS
100-year Peak Flow	1,300 CFS	1,720 CFS

21 It is important to note that there is always a great deal of uncertainty associated with peak
22 flow rates. Even with the best of information on past flow rates (which is very rare), future
23 flow rates may deviate significantly. Irrespective of the design flow rate used, there is
24 always a chance that a larger storm will come. The minimum required design flow to
25 meet the grant requirements is the FEMA 100-year flow rate.

26 The County flows do not account for limitations in upstream capacity. Also, since 1992
27 the Moraga Open Space Ordinance (MOSO) has limited development in certain areas.
28 For these reasons, staff believes that the 1992 CCCFD data may reflect peak flow rates
29 higher than necessary.

30 The 10-foot by 12-foot culvert crossing below Devin Drive imposes a constraint on the
31 system. At higher flow rates, the water will back up and create flooding irrespective of
32 the capacity of the new channel.

33 To deal with these contingencies, the consultants have been directed by staff to design
34 to the extent practicable to the maximum flow rate that would pass through the Devin
35 Drive culvert without backing up and causing flooding. This flow rate is greater than the
36 FEMA 100-year peak flow rate but less than the CCCFD 100-year peak flow rate.
37 Designing for a flow rate greater than this would be futile, and aiming for less would risk
38 the possibility of potential flooding that could have been avoided.

1 Grant Funding Sources

2 Town Council provided direction to staff to pursue grant funding. Over the years, staff
3 applied for multiple grants. The Town was successful in being awarded three Project
4 grants³:

6 1. California Natural Resources Agency River Parkways	\$399,980
7 2. East Bay Regional Park District Measure WW Urban Creeks	\$599,743
8 3. FEMA Hazard Mitigation Grant Program	\$803,331 ⁴

9
10 The California Natural Resources Agency (CNRA) River Parkways grant was prepared
11 by WRECO, submitted in September 2015, and awarded in June 2018. This grant expires
12 on May 1, 2025.

13
14 The East Bay Regional Park District (EBRPD) Measure WW Urban Creeks grant was
15 prepared by staff, submitted in February 2018, and awarded in May 2018. This grant
16 expires on December 31, 2025.

17
18 The Federal Emergency Management Agency (FEMA) Hazard Mitigation Grant Program
19 grant was prepared by WRECO, submitted in November 2017, and awarded in March
20 2020. The award was based on an estimated Project cost of \$1.2 million, with FEMA to
21 fund 66 percent of the total.

22
23 FEMA releases funding in phases: Phase 1 – Preliminary Engineering; Phase 2 – Final
24 Engineering; and Phase 3 - Construction. The Town must complete each phase
25 successfully before funds are released for the next phase.

26
27 FEMA has approved the Town to proceed with Phase 1, which includes the following
28 tasks:

- 29
30 a. Project Management
31 b. Field Investigation and Survey
32 c. Hydraulic Study
33 d. Biological Resources Study
34 e. Environmental and technical studies (including preparation of CEQA
35 documentation)
36 f. Sixty-five percent complete *Plans, Specifications, and Estimates* (PS&E)

37 Engineering Design Process

38
39 A Request for Qualifications and Proposal (RFP/Q) was advertised on July 7, 2020, for
40 the Phase 1 preliminary engineering tasks described above.

41
42 On November 2, 2020, Council awarded a contract to BKF Engineers (BKF) for \$192K.
43 BKF is a full-service consulting engineering firm located in Walnut Creek, specializing in
44 providing a wide range of technical services related to the Laguna Creek Restoration
45 Project. BKF has successfully performed on past projects with the Town.

³ The grant Application packages are available for inspection upon request.

⁴ Only \$192K for Phase 1 has been allocated at this time.

1 In addition to the Phase 1 tasks described above, BKF's contract includes: preparing 15
2 percent design documents and presenting them at a public meeting to elicit feedback from
3 the community; and providing updates to the Council at the 15 percent, 30 percent and
4 65 percent progress designs.

5
6 At the completion of Phase 1, FEMA will determine whether to fund additional phases of
7 work. Should FEMA agree to fund Phase 2, the Town Council can evaluate the project's
8 merits in order to determine whether to continue with Phase 2. If Council decides to
9 proceed with Phase 2, a design services contract amendment would be issued to BKF to
10 complete the design and prepare construction documentation.

11
12 The FEMA Phase 2 project scope will include the following tasks:

- 13
14 a) Obtain necessary environmental permits
15 b) Coordinate with Utility Agencies for any needed relocation work
16 c) Complete 100 percent complete Plans, Specifications, and Estimates
17 d) Provide technical support during Bidding
18 e) Provide technical support during Construction

19
20 **Discussion**

21
22 BKF prepared an initial 15 percent engineering design, and the Town sought public input
23 on the Project by holding a number of Laguna Creek Restoration Project informational
24 meetings via Zoom.

25
26 On February 23, 2021, staff held a public workshop. Staff collaborated with BKF and
27 BKF's subconsultant, Restoration Design Group (RDG), to facilitate a discussion of the
28 project and answer questions about the design. Broad-level alternatives were presented
29 relating to:

- 30
31 1. The size and configuration of the bridge as it pertains to the location of an
32 Americans with Disabilities Act (ADA) accessible parking stall
33 2. The pedestrian trail
34 3. The aesthetics for necessary vehicular barriers and guard rails

35
36 The presentation was given by Town staff, without the consultants, to the Planning
37 Commission on March 2, 2021 and to the Park and Recreation Commission on March 15,
38 2021.

39
40 The views expressed during these meetings are summarized after the detailed
41 descriptions of various elements of the Project below.

42
43 **1. Bridge and ADA Accessible Parking**

44 Staff recognizes the importance of making this beautiful location accessible to all and is
45 focused on finding the best solution to meet this objective. Attachment A, consisting of
46 Figures A-1 and A-2, shows the two broad-level alternatives for the bridge. Figure A-1
47 shows the bridge that would be required to facilitate the ADA parking stall in its current
48 location at the side of the Pavilion building. This would require a bridge width of

1 approximately 55 feet which would be expensive to construct. Another issue with
2 maintaining the ADA parking in its current location is that a portion of the space would
3 intrude into the proposed 5-foot wide trail which runs along the creek and in general it
4 impedes accessibility around the grounds due to spatial limitations.

5
6 Relocation of the ADA parking stall was explored to move the stall to the front of the
7 building at a location that would provide equivalent access to the building while removing
8 the existing impediment to free movement around the building. Parks and Recreation
9 Department staff provided input on how users engage with the grounds, including
10 identifying favorite areas for taking wedding photographs. The sightlines from inside and
11 outside the Pavilion were also considered. Additionally, possible future uses of the
12 grounds, such as for outdoor seating, were considered to identify an optimal location for
13 the ADA parking stall. After exploring several locations and configurations, the location
14 proposed in Figure A-2 creates the best possible access while honoring views and
15 preserving grounds that may be utilized in the future.

16
17 Relocating the ADA parking stall to this location importantly creates a connection between
18 the new trail and the existing trail on the other side of the drive from the Pavilion Building
19 along with allowing for pedestrian access along the side of the building. It also allows for
20 vehicular access to the Pavilion Courtyard gate, which would facilitate catering and other
21 important activities at the facility. This proposed location also allows for a narrower bridge
22 (35 feet as opposed to 55 feet) that would be more in scale with the surrounding area and
23 cost less to construct. As moving the parking changes the aesthetics of the front of the
24 Pavilion building, input from the public was solicited and direction from the Council is
25 requested.

26
27 **2. Pedestrian Trail**

28 There is a pedestrian gate at the corner of Devin Drive and Moraga Road leading into the
29 Hacienda de las Flores grounds. Pedestrians can access the grounds from this location
30 by traversing a mulch trail. While the mulch trail provides a natural and rustic aesthetic,
31 it is not easily accessible for wheelchairs, strollers, heeled shoes, or other ambulatory
32 limitations. In an effort to increase accessibility, staff is proposed an option to upgrade
33 the trail to decomposed granite or some other durable surface. Decomposed granite was
34 explored because it would maintain a natural look and provide accessibility.

35
36 Since a new decomposed granite trail would constitute a different aesthetic, staff sought
37 the public's input on this change and is presenting it as an alternative for Council to
38 consider.

39
40 **3. Required Guardrails**

41 Portions of the new creek channel, as well as the vehicular bridge, will require safety
42 barriers or railing. Alternatives for the railing are being presented early in the Project to
43 assist the designers in understanding the broader vision for the facility.

44
45 There are currently two types of protective barriers at the site: Upstream (north) of the
46 Pavilion building, there are rustic wooden ranch-type rails adjacent to the foot bridges;
47 and, where Laguna Creek enters the culvert near the Pavilion, there is a headwall
48 consisting of stamped concrete. Both barriers (the wooden rails and the concrete wall)

1 are visually pleasing and believed to be well-liked by the public. The public's preferences
2 on this item was requested as is direction from Council.

3

4 **Public Feedback Received**

5 During each of the three meetings, and in a separate email sent by one community
6 member, the preferred options were:

- 7
- 8 1. To move the ADA accessible parking stall to the front of the building to maintain
9 access, facilitate movement around the building, and allow for a narrower bridge.
 - 10 2. To have a decomposed granite (or other durable material) trail that is more
11 accessible for wheelchairs, strollers, and heeled shoes.
 - 12 3. To utilize new guardrails/barriers similar in appearance to the wooden ones used
13 elsewhere on the grounds.

14

15 At the Planning Commission meeting, the question arose as to whether increasing
16 capacity at the Hacienda would induce flooding downstream. In other words, by reducing
17 flooding at the Pavilion, would we be pushing the problem onto residences downstream?
18 Generally speaking, in some cases alleviating flooding in one area can increase the
19 flooding in another; in other cases, it could have the opposite effect and reduce flooding
20 downstream.

21

22 This question was studied at an earlier stage of the project and it was determined that the
23 change between the existing condition and the proposed restoration would not lead to an
24 appreciable difference in peak flow rates downstream and therefore would neither
25 increase nor decrease the risk of flooding these residences.

26

27 **Next Steps**

28 Council direction will be incorporated into the Project and an update will be brought back
29 to the Council at the 30 percent and 65 percent design stages to receive additional
30 direction from the Council. FEMA will determine whether to fund the second phase of the
31 project based upon the 65 percent design. Upon notification from FEMA, staff will return
32 to Council to seek direction on how to proceed with the Project.

33

34 **Alternatives**

- 35
- 36 1. Receive the 15 percent design and direct staff to proceed in accordance with the
37 input received from the public outreach process; or
 - 38 2. Receive the 15 percent design and direct staff to proceed with modifications and/or
39 with different alternatives; or
 - 40 3. Receive the 15 percent design and provide other direction for staff.

41

42 **Recommendation**

43

44 Receive the 15 percent design and direct staff to proceed in accordance with the input
45 received from the public outreach process.

46

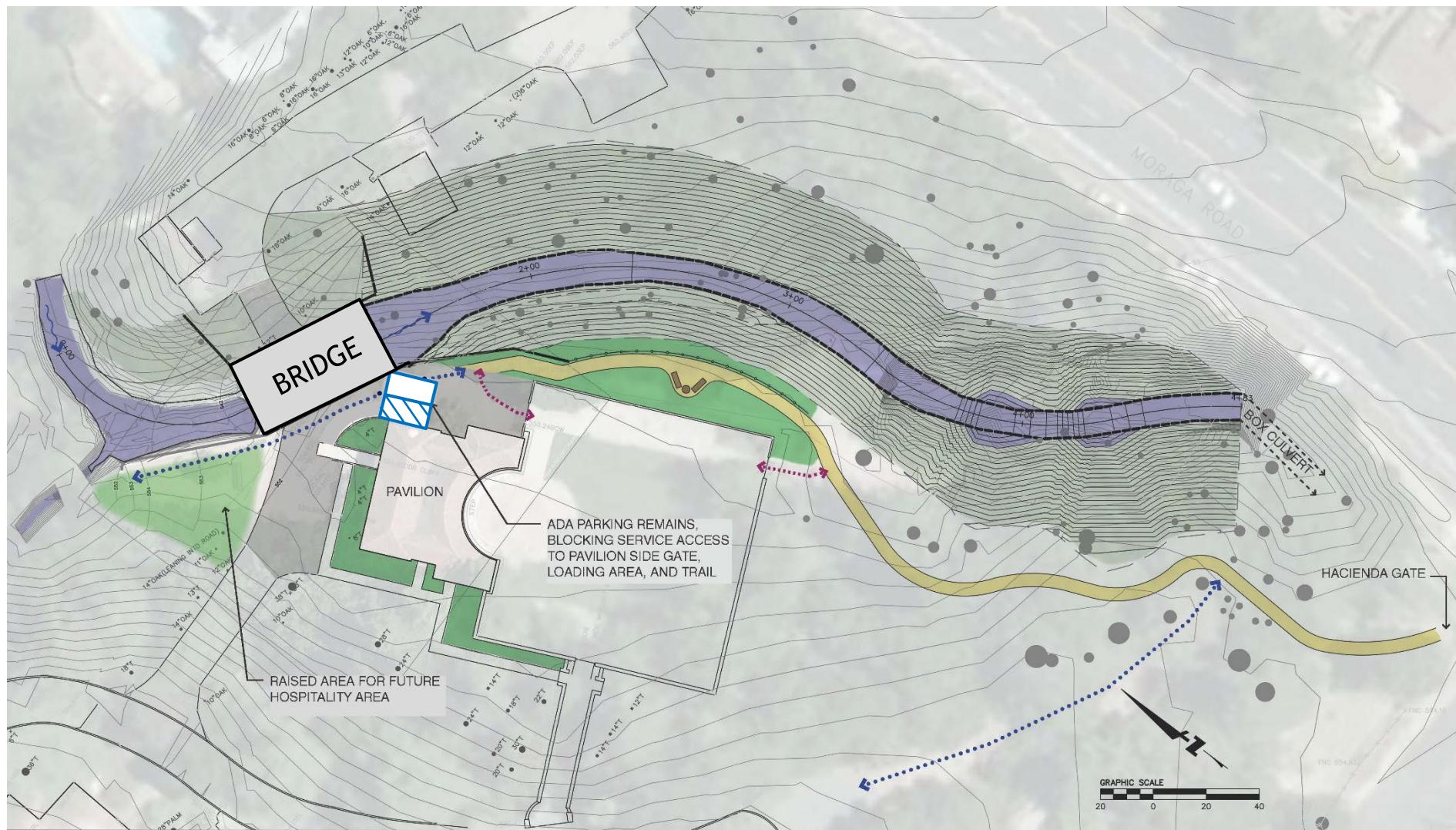
47 **Report reviewed by: Cynthia Battenberg, Town Manager**

1 **Attachments:**

2

3 **A. Bridge Configuration and ADA Accessible Parking Stall Location**

4 Figure A-1: Wide Bridge with ADA Parking in its Current Location


5 Figure A-2: Narrow Bridge with ADA Parking Moved to Front of Building

ATTACHMENT A

Bridge Configurations and ADA Accessible Parking
Stall Locations

Figure A-1

Wide Bridge with ADA Parking in Its Current Location

ORNAMENTAL PLANTING BUFFER, NATIVES CREEKSIDE

RIPARIAN WOODLAND PLANTING, NATIVE OAKS


NEW 5' WIDE MINIMUM TRAIL - MULCH OR D.G.

ASPHALT PAVING - VEHICULAR CIRCULATION

PAVILION CIRCULATION

TRAIL CIRCULATION

Figure A-2 Narrow Bridge with ADA Parking Moved to Front of Building

ORNAMENTAL PLANTING BUFFER, NATIVES CREEKSIDE

RIPARIAN WOODLAND PLANTING, NATIVE OAKS

NEW 5' WIDE MINIMUM TRAIL - MULCH OR D.G.

ASPHALT PAVING - VEHICULAR CIRCULATION

PAVILION CIRCULATION

TRAIL CIRCULATION